skip to main content


Search for: All records

Creators/Authors contains: "Tan, Sheldon X.-D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2024
  2. This work proposes a new dynamic thermal and reliability management framework via task mapping and migration to improve thermal performance and reliability of commercial multi-core processors considering workload-dependent thermal hot spot stress. The new method is motivated by the observation that different workloads activate different spatial power and thermal hot spots within each core of processors. Existing run-time thermal management, which is based on on-chip location-fixed thermal sensor information, can lead to suboptimal management solutions as the temperatures provided by those sensors may not be the true hot spots. The new method, called Hot-Trim, utilizes a machine learning-based approach to characterize the power density hot spots across each core, then a new task mapping/migration scheme is developed based on the hot spot stresses. Compared to existing works, the new approach is the first to optimize VLSI reliabilities by exploring workload-dependent power hot spots. The advantages of the proposed method over the Linux baseline task mapping and the temperature-based mapping method are demonstrated and validated on real commercial chips. Experiments on a real Intel Core i7 quad-core processor executing PARSEC-3.0 and SPLASH-2 benchmarks show that, compared to the existing Linux scheduler, core and hot spot temperature can be lowered by 1.15 to 1.31C. In addition, Hot-Trim can improve the chip's EM, NBTI and HCI related reliability by 30.2%, 7.0% and 31.1% respectively compared to Linux baseline without any performance degradation. Furthermore, it improves EM and HCI related reliability by 29.6% and 19.6% respectively, and at the same time even further reduces the temperature by half a degree compared to the conventional temperature-based mapping technique. 
    more » « less
  3. In this work, we propose a new approximate logarithm multipliers (ALM) based on a novel error compensation scheme. The proposed hardware-efficient ALM, named HEALM, first determines the truncation width for mantissa summation in ALM. Then the error compensation or reduction is performed via a lookup table, which stores reduction factors for different regions of input operands. This is in contrast to an existing approach, in which error reduction is performed independently of the width truncation of mantissa summation. As a result, the new design will lead to more accurate result with both reduced area and power. Furthermore, different from existing approaches which will either introduce resource overheads when doing error improvement or lose accuracy when saving area and power, HEALM can improve accuracy and resource consumption at the same time. Our study shows that 8-bit HEALM can achieve up to 2.92%, 9.30%, 16.08%, 17.61% improvement in mean error, peak error, area, power consumption respectively over REALM, which is the state of art work with the same number of bits truncated. We also propose a single error coefficient mode named HEALM-TA-S, which improves the ALM design with a truncation adder (TA) for mantissa summation. Furthermore, we evaluate the proposed HEALM design in a discrete cosine transformation (DCT) application. The result shows that with different values of k, HEALM-TA can improve the image quality upon the ALM baseline by 7.8 to 17.2dB in average and HEALM-SOA can improve 2.9 to15.8dB in average, respectively. Besides, HEALM-TA and HEALM-SOA outperform all the state of artworks with k=2,3,4 on the image quality. And the single coefficient mode, HEALM-TA-S, can improve the image quality upon the baseline up to 4.1dB in average with extremely low resource consumption 
    more » « less
  4. In this work, we present a novel approach to real-time tracking of full-chip heatmaps for commercial off-the-shelf microprocessors based on machine-learning. The proposed post-silicon approach, named RealMaps, only uses the existing embedded temperature sensors and workload-independent utilization information, which are available in real-time. Moreover, RealMaps does not require any knowledge of the proprietary design details or manufacturing process-specific information of the chip. Consequently, the methods presented in this work can be implemented by either the original chip manufacturer or a third party alike, and is aimed at supplementing, rather than substituting, the temperature data sensed from the existing embedded sensors. The new approach starts with offline acquisition of accurate spatial and temporal heatmaps using an infrared thermal imaging setup while nominal working conditions are maintained on the chip. To build the dynamic thermal model, a temporal-aware long-short-term-memory (LSTM) neutral network is trained with system-level features such as chip frequency, instruction counts, and other high-level performance metrics as inputs. Instead of a pixel-wise heatmap estimation, we perform 2D spatial discrete cosine transformation (DCT) on the heatmaps so that they can be expressed with just a few dominant DCT coefficients. This allows for the model to be built to estimate just the dominant spatial features of the 2D heatmaps, rather than the entire heatmap images, making it significantly more efficient. Experimental results from two commercial chips show that RealMaps can estimate the full-chip heatmaps with 0.9C and 1.2C root-mean-square-error respectively and take only 0.4ms for each inference which suits well for real-time use. Compared to the state of the art pre-silicon approach, RealMaps shows similar accuracy, but with much less computational cost. 
    more » « less